
Data warehouse
connector

CORE V.4

2024 - All rights reserved to XXII GROUP. 1

Table of contents
CORE Engine​ 3

Configuration​ 3

CORE Insights​ 7

Database schemas​ 7
CountEvent Table​ 8
TriggerObjectEvent Table​ 9
Relation between Skill type and the SQL tables​ 10

Detection alerts​ 10
Crowd detection alerts​ 12
Line based countings​ 14
Zone based countings​ 16
Average time per zone​ 17
Statistics​ 20

How to query the database​
21

TriggerObjectEvent table​ 21
Get the number of object for each label and for each skill​ 21
Get the average time per zone for each label for each skill​ 21
Get the number of corresponding persons to each profile combinati..​ 22

CountEvent table​ 24
Get the average count in the zone for each skill by label​ 24​

2024 - All rights reserved to XXII GROUP. 2

This document aims to introduce the data warehouse connector
integrated into Core 4.​

CORE Engine
Configuration

The Site Name and Site ID, essential for various settings communications, have been
relocated to the Settings / Application tab.​

The Data Warehouse tab allows adding the configuration for communication with a
data warehouse.​

The Data Warehouse tab is accessible to users with the following profiles: XXII Admin,
Super Admin, and Integrator.

The configuration determining which database to use and how to connect to
them is given by the front settings page. We upload a JSON file and then the
settings backend will publish a message containing the info of the json file under
the key config on one of theses 2 routes: /register/webhook/connector_name
or /webhook/connector_name/update.​

2024 - All rights reserved to XXII GROUP. 3

Unset

The generic message sent on this route is the following:​

{

 "vms": "<connector-name>",

 "isActive": "bool",

 "url": "str",

 "config": {

 "key1": "value1",

 "key2": "value2"

 }

}

●​ vms represents the vms name, it's not used by the database connector.
●​ isActive represents whether the connector is active or not. If set the false

all events sent through MQTT are ignored by the connector.
●​ url represents an url to connect to, it's not used by the database

connector.
●​ config a dictionary created from the uploaded JSON file containing the

connection information.

2024 - All rights reserved to XXII GROUP. 4

Unset

In this version, BigQuery is the only data warehouse supported by the connector.
Listed below is the information to be provided under the key config, which will
be uploaded to the front settings page:​

BigQuery

When connecting to BigQuery you should upload a json document following this
format:

The generic message sent on this route is the following:​

{
 "database_name": "bigquery",
 "metadata": {
 "Driver": "Simba Google BigQuery ODBC Connector",
 "OAuthMechanism": 0,
 "Email": "<sa-email>",
 "KeyFileContent": {
 "type": "service_account",
 "project_id": "<project-id>",
 "private_key_id": "<private-key-id>",
 "private_key": "<private-key>",
 "client_email": "<sa-email>",
 "client_id": "<client-id>",
 "auth_uri": "https://accounts.google.com/o/oauth2/auth",
 "token_uri": "https://oauth2.googleapis.com/token",
 "auth_provider_x509_cert_url":
"https://www.googleapis.com/oauth2/v1/certs",
 "client_x509_cert_url": "<client-x509-cert-url>",
 "universe_domain": "googleapis.com"
 },
 "Catalog": "<project-id>",
 "DefaultDataset": "<dataset-id>"
 }
}

2024 - All rights reserved to XXII GROUP. 5

●​ database_name represents the name of the database to use. Use bigquery
●​ The dictionary under KeyFileContent is the service account given by the

infra team. It's usually available on Bitwarden. The service account gives
specific rights on specific project.

●​ Email represents the email of the service account copy the one under the
client_email key in the service account

●​ Catalog represents the project_id you will find it in the service account just
copy it.

●​ DefaultDataset represents the dataset_id the infra team is responsible for
creating the dataset either ask them or go on the Gcloud console and in
your project choose the right dataset to put data in

2024 - All rights reserved to XXII GROUP. 6

CORE Insights
Database schemas

This pages presents the two target SQL tables and each of their key. It also
explains how each event type in the platform ends up in one of the two SQL
tables.​

2024 - All rights reserved to XXII GROUP. 7

CountEvent Table​

Count Event

STRING id PK

STRING skill_id

STRING skill_name

STRING site_id

STRING site_name

STRING camera_id

STRING camera_name

TIMESTAMP creation_date

STRING class_label

INTEGER class_count

The CountEvent table stores information related to counted events, such as skills,
sites, cameras, and classification details. In this table each row represents a
recurrent event sent each 5 secs whatever happens representing the count by
class. The table has the following columns:

●​ id (PK): A unique identifier for each class of each event.
●​ skill_id: The identifier of the skill associated with the event.
●​ skill_name: The name of the skill associated with the event.
●​ site_id: The identifier of the site where the event occurred.
●​ site_name: The name of the site where the event occurred.
●​ camera_id: The identifier of the camera that captured the event.
●​ camera_name: The name of the camera that captured the event.
●​ creation_date: The timestamp when the event was created in the

platform (different from the insertion date).
●​ class_label: The label associated to the count.
●​ class_count: The count associated to the class label.

2024 - All rights reserved to XXII GROUP. 8

TriggerObjectEvent Table

TriggerObjectEvent

STRING id PK

STRING skill_id

STRING skill_name

STRING site_id

STRING site_name

STRING camera_id

STRING camera_name

TIMESTAMP creation_date

STRING object_label

FLOAT object_validity_period NULLABLE

JSON metadata NULLABLE

The TriggerObjectEvent table stores information related to triggered object
events, such as skills, sites, cameras, object labels, and metadata. In this table each
row represents an insertion triggered by a particular event. The table has the
following columns:

id (PK): A unique identifier for each object of each event.
skill_id: The identifier of the skill associated with the event.
skill_name: The name of the skill associated with the event.
site_id: The identifier of the site where the event occurred.
site_name: The name of the site where the event occurred.
camera_id: The identifier of the camera that captured the event.
camera_name: The name of the camera that captured the event.
creation_date: The timestamp when the event was created in the platform
(different from the insertion date)
object_label: The label assigned to the object.
object_validity_period: The period for which the object stayed in the zone.
This field is only use for the Average time per zone skill type. This field can be
null.
metadata: Additional metadata associated with the object. It's currently used for
the JSON result of the VLM statistics skill. This field can be null.​

2024 - All rights reserved to XXII GROUP. 9

Unset

Relation between Skill type and the SQL tables

The database connector receives 5 different types of messages on MQTT each
representing one kind of event, each of these events need to be transformed and
stored in one of the two SQL tables (CountEvent or TriggerObjectEvent).

Detection alerts

Alerts are stored in the TriggerObjectEvent table since we can decompose each
detection alerts into several objects. It also represents an event that is triggered
by something in that case when an object enters a zone for example.

Below is the MQTT message we receive when dealing with a detection alert.

{
 "_id": "5763c538-8553-11ef-b3a8-9adaac3f08a3",
 "zoneId": "66fa60eae507e5540ef2ee57",
 "zoneName": "Custom Detection",
 "jobId": "66fa60e2a82b19d64648dac5",
 "jobName": "Camera 22",
 "creationDate": "2024-10-08T08:57:26.608Z",
 "metadata": {
 "objects": {
 "1279963": {
 "label": "car",
 "boundingBox": [
 0.24433593451976776,
 0.4784722725550334,
 0.05937499925494194,
 0.07152777910232544
]
 },
 "1279967": {
 "label": "person",
 "boundingBox": [
 0.246,
 0.887,
 0.123,
 0.002
]
 }
 }
 }
}

2024 - All rights reserved to XXII GROUP. 10

This message would give the following insertion in the TriggerObjectEvent
table:

id site_id site_name camera_id camera_name skill_id

bcff6b72-9d18
-11ef-8be1-db
4ea7cac089

03e00cfe-98b5
-43dd-b3bb-4a
e4c496f3e7

XXII DEV 66fa60e2a82b1
9d64648dac5

Camera 22 66fa60eae507e
5540ef2ee57

c04987a4-9d18
-11ef-8be1-db
4ea7cac089

03e00cfe-98b5
-43dd-b3bb-4a
e4c496f3e7

XXII DEV 66fa60e2a82b1
9d64648dac5

Camera 22 66fa60eae507e
5540ef2ee57

skill_name creation_date object_label object_validity_period metadata

Custom
Detection

2024-10-08T08
:57:26.608000
UTC

car NULL NULL

Custom
Detection

2024-10-08T08
:57:26.608000
UTC

person NULL NULL

2024 - All rights reserved to XXII GROUP. 11

Unset

Crowd detection alerts

This kind of event is only used for the Grouping of people (Détection de
foule avec seuil) skill when we want to raise an alert whenever the count of
people in the zone reaches a defined threshold

This event is stored in the TriggerObjectEvent table since we can decompose
each alert into several "pseudo-object" each containing the alert for each class. It
also represents an event that is triggered by something in that case when the
crowd in a zone reaches a defined threshold.

Below is the MQTT message we receive when dealing with a crowd detection
alert.

{
 "_id": "5763c538-8553-11ef-b3a8-9adaac3f08a3",
 "zoneId": "66fa60eae507e5540ef2ee57",
 "zoneName": "Grouping of people",
 "jobId": "66fa60e2a82b19d64648dac5",
 "jobName": "Camera 22",
 "creationDate": "2024-10-08T08:57:26.608Z",
 "metadata": {
 "count": 13,
 "classes": {
 "car": 3,
 "person": 10
 }
 }
}

2024 - All rights reserved to XXII GROUP. 12

This message would give the following insertion in the TriggerObjectEvent
table:

id site_id site_name camera_id camera_name skill_id

1dfb9284-9d19
-11ef-8be1-db
4ea7cac089

03e00cfe-98b5
-43dd-b3bb-4a
e4c496f3e7

XXII DEV 66fa60e2a82b1
9d64648dac5

Camera 22 66fa60eae507e
5540ef2ee57

25790474-9d19
-11ef-8be1-db
4ea7cac089

03e00cfe-98b5
-43dd-b3bb-4a
e4c496f3e7

XXII DEV 66fa60e2a82b1
9d64648dac5

Camera 22 66fa60eae507e
5540ef2ee57

skill_name creation_date object_label object_validity_period metadata

Grouping of
people

2024-10-08T08
:57:26.608000
UTC

car NULL NULL

Grouping of
people

2024-10-08T08
:57:26.608000
UTC

person NULL NULL

2024 - All rights reserved to XXII GROUP. 13

Unset

Line based countings

Line countings are stored in the TriggerObjectEvent table since we can
decompose each counting into several objects. It also represents an event that is
triggered by something in that case when an object crosses a line.

Below is the MQTT message we receive when dealing with a line based counting.

{
 "_id": "6ba7b810-9dad-11d1-80b4-00c04fd430c8",
 "jobId": "6152e414a05a3408cbdc8d41",
 "jobName": "Camera 22",
 "countingId": "6152e414a05a3408cbdc8d42",
 "zoneId": "6152e3134b1215a02bcaa9c3",
 "zoneName": "Custom Counting line",
 "creationDate": "2021-09-28T21:12:35.777",
 "receivedDate": "2021-09-28T21:12:36.777",
 "count": 5,
 "delta": 3,
 "objects": [
 {
 "label": "person",
 "count": 5,
 "delta": 3,
 "changes": [
 {
 "id": 1,
 "delta": 1,
 "validityPeriod": null
 },
 {
 "id": 2,
 "delta": 1,
 "validityPeriod": null
 },
 {
 "id": 3,
 "delta": 1,
 "validityPeriod": null
 }
]
 }
]
}

2024 - All rights reserved to XXII GROUP. 14

This message would give the following insertion in the TriggerObjectEvent
table:

id site_id site_name camera_id camera_name skill_id

49c62654-9d19
-11ef-8be1-db
4ea7cac089

03e00cfe-98b5
-43dd-b3bb-4a
e4c496f3e7

XXII DEV 6152e414a05a3
408cbdc8d41

Camera 22 6152e3134b121
5a02bcaa9c3

5021b4dc-9d19
-11ef-8be1-db
4ea7cac089

03e00cfe-98b5
-43dd-b3bb-4a
e4c496f3e7

XXII DEV 6152e414a05a3
408cbdc8d41

Camera 22 6152e3134b121
5a02bcaa9c3

577e1c98-9d19
-11ef-8be1-db
4ea7cac089

03e00cfe-98b5
-43dd-b3bb-4a
e4c496f3e7

XXII DEV 6152e414a05a3
408cbdc8d41

Camera 22 6152e3134b121
5a02bcaa9c3

skill_name creation_date object_label object_validity_period metadata

Custom
Counting line

2021-09-28T21
:12:35.777000
UTC

person NULL NULL

Custom
Counting line

2021-09-28T21
:12:35.777000
UTC

person NULL NULL

Custom
Counting line

2021-09-28T21
:12:35.777000
UTC

person NULL NULL

2024 - All rights reserved to XXII GROUP. 15

Unset

Zone based countings

Zone countings are stored in the CountEvent table since we can decompose
each counting into several classes. It also represents an event that is recurrent
since a zone counting skill sends the count by class in the zone each 5 secs. We
send it every 5 secs even the count for the class did not change

Below is the MQTT message we receive when dealing with a zone based
counting.

{
 "_id": "6ba7b810-9dad-11d1-80b4-00c04fd430c8",
 "jobId": "6152e414a05a3408cbdc8d41",
 "jobName": "Camera 22",
 "countingId": "6152e414a05a3408cbdc8d42",
 "zoneId": "6152e3134b1215a02bcaa9c3",
 "zoneName": "Custom counting zone",
 "creationDate": "2021-09-28T21:12:35.777",
 "receivedDate": "2021-09-28T21:12:36.777",
 "count": 5,
 "delta": 3,
 "objects": [
 {
 "label": "person",
 "count": 5,
 "delta": 3
 }
]
}

This message would give the following insertion in the CountEvent table:

id site_id site_name camera_id camera_name skill_id

ed146eec-9d19
-11ef-8be1-db
4ea7cac089

03e00cfe-98b5
-43dd-b3bb-4a
e4c496f3e7

XXII DEV 6152e414a05a3
408cbdc8d41

Camera 22 6152e3134b121
5a02bcaa9c3

skill_name creation_date class_label class_count

Custom
Counting zone

2021-09-28T21
:12:35.777000
UTC

person 5

2024 - All rights reserved to XXII GROUP. 16

Average time per zone

Average time per zone is a special kind of zone based counting.

Average time per zone events are stored in the TriggerObjectEvent table. It
represents an event that is triggered every time an object enters or exits a zone. If
an object exits the zone the time it spent in the zone is recorded in the
validityPeriod field and then an insertion is made into BigQuery only for this
object.

2024 - All rights reserved to XXII GROUP. 17

Unset

Below is the MQTT message we receive when dealing with a zone based
counting.

{
 "_id": "6ba7b810-9dad-11d1-80b4-00c04fd430c8",
 "jobId": "6152e414a05a3408cbdc8d41",
 "jobName": "Camera 22",
 "countingId": "6152e414a05a3408cbdc8d42",
 "zoneId": "6152e3134b1215a02b2a49c3",
 "zoneName": "Average time per zone",
 "creationDate": "2021-09-28T21:12:35.777",
 "receivedDate": "2021-09-28T21:12:36.777",
 "count": 5,
 "delta": 3,
 "objects": [
 {
 "label": "person",
 "count": 5,
 "delta": 1,
 "changes": [
 {
 "id": 1,
 "delta": -1,
 "validityPeriod": 10.5
 },
 {
 "id": 2,
 "delta": 1,
 "validityPeriod": null
 },
 {
 "id": 3,
 "delta": 1,
 "validityPeriod": null
 }
]
 }
]
}

2024 - All rights reserved to XXII GROUP. 18

This message would give the following insertion in the TriggerObjectEvent
table:​

id site_id site_name camera_id camera_name skill_id

a47027b2-9d19
-11ef-8be1-db
4ea7cac089

03e00cfe-98b5
-43dd-b3bb-4a
e4c496f3e7

XXII DEV 6152e414a05a3
408cbdc8d41

Camera 22 6152e3134b121
5a02bcaa9c3

skill_name creation_date object_label object_validity_period metadata

Average time
per zone

2021-09-28T21
:12:35.777000
UTC

person 10.5 NULL

2024 - All rights reserved to XXII GROUP. 19

Unset

VLM Statistics

Statistics events are stored in the TriggerObjectEvent table since each event
represents an object when it triggers something. Info on the object is then added
by a VLM under the field objectMetadata.

Below is the MQTT message we receive when dealing with a statistic.

{
 "_id": "6152e414a05a3408cbdc8d40",
 "zoneId": "6152e3134b1215a02bcaa9c3",
 "zoneName": "VLM statistics",
 "jobId": "6152e414a05a3408cbdc8d41",
 "jobName": "Camera 22",
 "creationDate": "2021-09-28T21:12:35.777",
 "label": "car",
 "objectId": 1337,
 "objectMetadata": {
 "color": "red",
 "brand": "Renault"
 }
}

This message would give the following insertion in the TriggerObjectEvent
table:

id site_id site_name camera_id camera_name skill_id

bfc0fb4e-9d1a
-11ef-8be1-db
4ea7cac089

03e00cfe-98b5
-43dd-b3bb-4a
e4c496f3e7

XXII DEV 6152e414a05a3
408cbdc8d41

Camera 22 6152e3134b121
5a02bcaa9c3

skill_name creation_date object_label object_validity_period metadata

VLM
statistics

2021-09-28T21
:12:35.777000
UTC

car NULL {"color": "red",
"brand": "Renault"}

2024 - All rights reserved to XXII GROUP. 20

Unset

Unset

How to query the database
You will find below explanation on the recommended way to query the database.

TriggerObjectEvent table

Get the number of object for each label and for each skill

SELECT
 skill_id,
 skill_name,
 object_label,
 COUNT(object_label) AS count_by_label
FROM
 `project_id.dataset_id.TriggerObjectEvent`
GROUP BY
 object_label,
 skill_id,
 skill_name

Get the average time per zone for each label for each skill

SELECT
 skill_id,
 object_label,
 AVG(object_validity_period) AS avg_validity_period
FROM
 `project_id.dataset_id.TriggerObjectEvent`
WHERE
 object_validity_period IS NOT NULL
GROUP BY
 skill_id,
 object_label

2024 - All rights reserved to XXII GROUP. 21

Unset

Get the number of corresponding persons to each profile combination

WITH ExtractedMetadata AS (
 SELECT
 skill_id,
 camera_id,
 EXTRACT(DATE FROM creation_date) AS day_date,
 EXTRACT(HOUR FROM creation_date) AS hour,
 JSON_VALUE(METADATA, '$.age') AS age,
 JSON_VALUE(METADATA, '$.gender') AS gender,
 JSON_VALUE(METADATA, '$.style') AS style
 FROM
 `project_id.dataset_id.TriggerObjectEvent`
)

SELECT
 skill_id,
 camera_id,
 day_date,
 hour,
 age,
 CASE
 WHEN age != 'underage' THEN gender
 ELSE NULL
 END AS gender,
 CASE
 WHEN age != 'underage' THEN style
 ELSE NULL
 END AS style,
 COUNT(*) AS count_by_type
FROM
 ExtractedMetadata
WHERE
 age IN ('underage', '18-30', '31-44', '45-54', '55-64', '65+')
 OR gender IN ('female', 'male')
 OR style IN ('casual', 'relaxed', 'athleisure', 'business casual',
'professional', 'chic', 'undetermined')
GROUP BY
 skill_id,
 camera_id,
 day_date,
 hour,
 age,
 gender,
 style

2024 - All rights reserved to XXII GROUP. 22

Unset

CountEvent table

Get the average count in the zone for each skill by label

SELECT
 skill_id,
 class_label,
 AVG(class_count) AS avg_count_by_class
FROM
 `project_id.dataset_id.CountEvent`
GROUP BY
 skill_id,
 class_label

2024 - All rights reserved to XXII GROUP. 23

	Table of contents
	CORE Engine
	Configuration

	CORE Insights
	Database schemas
	CountEvent Table​
	TriggerObjectEvent Table
	object_validity_period: The period for which the object stayed in the zone. This field is only use for the Average time per zone skill type. This field can be null.

	Relation between Skill type and the SQL tables
	Detection alerts
	Crowd detection alerts
	Line based countings
	Zone based countings
	Average time per zone
	VLM Statistics

	How to query the database
	TriggerObjectEvent table
	Get the number of object for each label and for each skill
	Get the average time per zone for each label for each skill
	Get the number of corresponding persons to each profile combination

	CountEvent table
	Get the average count in the zone for each skill by label

