XXII

Data warehouse

connector
CORE V.4

2024 - All rights reserved to XXII GROUP. 1

Table of contents

CORE Engine

Configuration

CORE Insights

Database schemas

CountEvent Table

TriggerObjectEvent Table

Relation between Skill type and the SQL tables
Detection alerts
Crowd detection alerts
Line based countings
Zone based countings
Average time per zone
Statistics

How to query the database

TriggerObjectEvent table
Get the number of object for each label and for each skill
Get the average time per zone for each label for each skill
Get the number of corresponding persons to each profile combinati..

CountEvent table
Get the average count in the zone for each skill by label

[0¢)

10
10
12
14
16
17
20

21
21
21
21
22

24
24

2024 - All rights reserved to XXII GROUP. 2

This document aims to introduce the data warehouse connector
integrated into Core 4.

CORE Engine

Configuration

The Site Name and Site ID, essential for various settings commmunications, have been
relocated to the Settings / Application tab.

The Data Warehouse tab allows adding the configuration for communication with a
data warehouse.

The Data Warehouse tab is accessible to users with the following profiles: XXII Admin,
Super Admin, and Integrator.

The configuration determining which database to use and how to connect to
them is given by the front settings page. We upload a JSON file and then the
settings backend will publish a message containing the info of the json file under
the key config on one of theses 2 routes: /register/webhook/connector_name
or /webhook/connector_name/update.

2024 - All rights reserved to XXII GROUP. 3

The generic message sent on this route is the following:

Unset
"vms": "<connector-name>",
"isActive": "bool",
Ilur_lll: Ilstrll'
"config": {

"key1": "valuel",
"key2": "value2"

e vms represents the vms name, it's not used by the database connector.

e 1isActive represents whether the connector is active or not. If set the false
all events sent through MQTT are ignored by the connector.

e urlrepresents an url to connect to, it's not used by the database
connector.

e config a dictionary created from the uploaded JSON file containing the
connection information.

2024 - All rights reserved to XXII GROUP. 4

In this version, BigQuery is the only data warehouse supported by the connector.
Listed below is the information to be provided under the key config, which will
be uploaded to the front settings page:

BigQuery

When connecting to BigQuery you should upload a json document following this
format:

The generic message sent on this route is the following:

Unset
{
"database_name": "bigquery",
"metadata": {
“Driver": "Simba Google BigQuery ODBC Connector"”,
"OAuthMechanism": 0,

"Email": "<sa-email>",
"KeyFileContent": {
"type": "service_account",
"project_id": "<project-id>",
"private_key_id": "<private-key-id>",
"private_key": "<private-key>",
“client_email": "<sa-email>",
"client_id": "<client-id>",
"auth_uri": "https://accounts.google.com/o/oauth2/auth",

"token_uri": "https://oauth2.googleapis.com/token",
"auth_provider_x509_cert_url":
"https://www.googleapis.com/oauth2/v1/certs",

"client_x509_cert_url": "<client-x509-cert-url>",
"universe_domain": "googleapis.com"

}

"Catalog": "<project-id>",

"DefaultDataset": "<dataset-id>"

2024 - All rights reserved to XXII GROUP. 5

database_name represents the name of the database to use. Use bigquery
The dictionary under KeyFileContent is the service account given by the
infra team. It's usually available on Bitwarden. The service account gives
specific rights on specific project.

Email represents the email of the service account copy the one under the
client_email key in the service account

Catalog represents the project_id you will find it in the service account just
copy it.

DefaultDataset represents the dataset_id the infra team is responsible for
creating the dataset either ask them or go on the Gcloud console and in
your project choose the right dataset to put data in

2024 - All rights reserved to XXII GROUP. 6

CORE Insights

Database schemas

This pages presents the two target SQL tables and each of their key. It also
explains how each event type in the platform ends up in one of the two SQL

tables.

2024 - All rights reserved to XXII GROUP. 7

CountEvent Table

Count Event
STRING id PK
STRING skill_id
STRING skill_name
STRING site_id
STRING site_name
STRING camera_id
STRING camera_name
TIMESTAMP creation_date
STRING class_label
INTEGER class_count

The CountEvent table stores information related to counted events, such as skills,
sites, cameras, and classification details. In this table each row represents a
recurrent event sent each 5 secs whatever happens representing the count by
class. The table has the following columns:

e 1id (PK): A unique identifier for each class of each event.

e skill_id: The identifier of the skill associated with the event.

e skill_name: The nhame of the skill associated with the event.

e site_id: The identifier of the site where the event occurred.

e site_name: The name of the site where the event occurred.

e camera_id: The identifier of the camera that captured the event.
e camera_name: The name of the camera that captured the event.
e creation_date: The timestamp when the event was created in the

platform (different from the insertion date).

e class_label: The label associated to the count.

e class_count: The count associated to the class label.

2024 - All rights reserved to XXII GROUP. 8

TriggerObjectEvent Table

TriggerObjectEvent
STRING id PK
STRING skill_id
STRING skill_name
STRING site_id
STRING site_name
STRING camera_id
STRING camera_name
TIMESTAMP creation_date
STRING object_label
FLOAT object_validity_period NULLABLE
JSON metadata NULLABLE

The TriggerObjectEvent table stores information related to triggered object
events, such as skKills, sites, cameras, object labels, and metadata. In this table each
row represents an insertion triggered by a particular event. The table has the
following columns:

id (PK): A unique identifier for each object of each event.

skill_id: The identifier of the skill associated with the event.

skill_name: The name of the skill associated with the event.

site_id: The identifier of the site where the event occurred.

site_name: The name of the site where the event occurred.

camera_id: The identifier of the camera that captured the event.

camera_name: The name of the camera that captured the event.
creation_date: The timestamp when the event was created in the platform
(different from the insertion date)

object_label: The label assigned to the object.

object_validity_period: The period for which the object stayed in the zone.
This field is only use for the Average time per zone skill type. This field can be
null.

metadata: Additional metadata associated with the object. It's currently used for
the JSON result of the VLM statistics skill. This field can be null.

2024 - All rights reserved to XXII GROUP. 9

Relation between Skill type and the SQL tables

The database connector receives 5 different types of messages on MQTT each
representing one kind of event, each of these events need to be transformed and
stored in one of the two SQL tables (CountEvent or TriggerObjectEvent).

Detection alerts

Alerts are stored in the TriggerObjectEvent table since we can decompose each
detection alerts into several objects. It also represents an event that is triggered
by something in that case when an object enters a zone for example.

Below is the MQTT message we receive when dealing with a detection alert.

Unset

'_id": "5763c538-8553-11ef-b3a8-9adaac3f08a3",
"zoneId": "66fab0eae507e5540ef2ee57",

"zoneName": "Custom Detection",
"jobId": "66fa6Be2a82b19d64648dac5",
"jobName": "Camera 22",

"creationDate": "2024-10-08T08:57:26.608Z",
"metadata": {
"objects": {
"1279963": {
"label": "car",
"boundingBox": [

]

}

"1279967": {
"label": "person",
"boundingBox": [

]

}

2024 - All rights reserved to XXII GROUP. -|O

This message would give the following insertion in the TriggerObjectEvent

table:

id site_id site_name camera_id camera_name skill_id
bcff6b72-9d18 | 83eBBcfe-98b5 | XXII DEV 66fab0e2a82b1 | Camera 22 66fab0eae507e
-11ef-8bel1-db | -43dd-b3bb-4a 9d64648dac5 5540ef2ee57
4ea7cacB89 e4c496f3e7
c04987a4-9d18 | ©3eB0cfe-98b5 | XXII DEV 66fab60e2a82b1 | Camera 22 66fab0eae507e
-11ef-8bel1-db | -43dd-b3bb-4a 9d64648dac5 5540ef2ee57
4ea7cacB89 e4c496f3e7
skill_name creation_date | object_label object_validity_period metadata
Custom 2024-10-08T08 | car NULL NULL
Detection :57:26.608000

uTC
Custom 2024-10-08T08 | person NULL NULL
Detection :57:26.608000

uTC

2024 - All rights reserved to XXIl GROUP. 11
UM MO e e T ! S

Crowd detection alerts

This kind of event is only used for the Grouping of people (Détection de
foule avec seuil) skill when we want to raise an alert whenever the count of
people in the zone reaches a defined threshold

This event is stored in the TriggerObjectEvent table since we can decompose
each alert into several "pseudo-object" each containing the alert for each class. It
also represents an event that is triggered by something in that case when the
crowd in a zone reaches a defined threshold.

Below is the MQTT message we receive when dealing with a crowd detection
alert.

Unset

{
"_id": "5763c538-8553-11ef-b3a8-9adaac3f08a3",
"zoneld": "66fabbeaeb507e5540ef2ee57",

"zoneName": "Grouping of people",
"jobId": "66fa60e2a82b19d64648dac5",
"jobName": "Camera 22",

“creationDate": "2024-10-08T08:57:26.608Z",
"metadata": {
“count": ,
"classes": {
"car": 3,
"person":

2024 - All rights reserved to XXII GROUP. -|2

This message would give the following insertion in the TriggerObjectEvent

table:

id site_id site_name camera_id camera_name skill_id
1dfb9284-9d19 | 83ebBbcfe-98b5 | XXII DEV 66fab60e2a82b1 | Camera 22 66fab0eae507e
-11ef-8bel1-db | -43dd-b3bb-4a 9d64648dac5 5540ef2ee57
4ea7cacB89 e4c496f3e7

25790474-9d19 | 03e080cfe-98b5 | XXII DEV 66fa60e2a82b1 | Camera 22 66fab0eae507e
-11ef-8be1-db | -43dd-b3bb-4a 9d64648dac5 5540ef2ee57
4ea7cacB89 e4c496f3e7

skill_name creation_date | object_label object_validity_period | metadata

Grouping of 2024-10-08T08 | car NULL NULL

people :57:26.608000

uTC
Grouping of 2024-10-08T08 | person NULL NULL

people

:57:26.608000
uTcC

2024 - All rights reserved to XXIl GROUP. 13

e

Line based countings

Line countings are stored in the TriggerObjectEvent table since we can
decompose each counting into several objects. It also represents an event that is
triggered by something in that case when an object crosses a line.

Below is the MQTT message we receive when dealing with a line based counting.

Unset

{
"_id": "6ba7b810-9dad-11d1-80b4-00c04fd430c8",
"jobId": "6152e414a05a3408cbdc8d41",
"jobName": "Camera 22",
"countingId": "6152e414a05a3408cbhdc8d42",
"zoneId": "6152e3134b1215a02bcaa9c3",
"zoneName": "Custom Counting line",
“creationDate": "2021-09-28T21:12:35.777",
"receivedDate": "2021-09-28T21:12:36.777",

"count": o,
"delta": 2,
"objects": [
{
"label": "person",
"count": o,
"delta": 2,
"changes": [
{
“id": 1,
"delta": 1,
"validityPeriod": null
“id": 2,
"delta": 1,
"validityPeriod": null
}
{
“id": 3,
"delta": 1,
"validityPeriod": null
}
]
}

2024 - All rights reserved to XXIl GROUP. 14

This message would give the following insertion in the TriggerObjectEvent

table:

id site_id site_name camera_id camera_name skill_id
49c62654-9d19 | 03e00cfe-98b5 | XXII DEV 6152e414a05a3 | Camera 22 6152e3134b121
-11ef-8bel1-db | -43dd-b3bb-4a 408cbdc8d41 5a02bcaa9c3
4ea7cacB89 e4c496f3e7
5021b4dc-9d19 | 83eBbcfe-98b5 | XXII DEV 6152e414a05a3 | Camera 22 6152e3134b121
-11ef-8bel1-db | -43dd-b3bb-4a 408cbdc8d41 5a02bcaadc3
4ea7cacB89 e4c496f3e7
577€1c98-9d19 | 63ebBbcfe-98b5 | XXII DEV 6152e414a05a3 | Camera 22 6152e3134b121
-11ef-8be1-db | -43dd-b3bb-4a 408cbdc8d41 5a@2bcaa9c3
4ea7cacB89 e4c496f3e7
skill_name creation_date | object_label object_validity_period metadata
Custom 2021-09-28T21 person NULL NULL
Counting line :12:35.777000

uTC
Custom 2021-09-28T21 person NULL NULL
Counting line :12:35.777000

uTC
Custom 2021-09-28T21 person NULL NULL
Counting line :12:35.777000

uTC

2024 - All rights reserved to XXIl GROUP. 15

Zone based countings

Zone countings are stored in the CountEvent table since we can decompose
each counting into several classes. It also represents an event that is recurrent
since a zone counting skill sends the count by class in the zone each 5 secs. We
send it every 5 secs even the count for the class did not change

Below is the MQTT message we receive when dealing with a zone based

counting.

Unset

"_id":

"6ba7b810-9dad-11d1-80b4-00c04fd430c8",

"jobId": "6152e414a05a3408cbdc8d41",
"jobName": "Camera 22",
"countingId": "6152e414a05a3408chdc8d42",

"zoneId": "6152e3134b1215a02bcaa9c3",
"zoneName" : "Custom counting zone",
"creationDate": "2021-09-28T21:12:35.777",
"receivedDate": "2021-09-28T21:12:36.777",
“count": o,
"delta": 2,
"objects": [
{
"label": "person",
“count": o,
"delta":
}

This message would give the following insertion in the

CountEvent table:

Counting zone

id site_id site_name camera_id camera_name skill_id
ed146eec-9d19 03e00cfe-98b5 | XXII DEV 6152e414a05a3 Camera 22 6152e3134b121
-11ef-8bel-db | -43dd-b3bb-4a 408cbdc8d41 5a02bcaa9c3
4ea7cacB89 e4c496f3e7

skill_name creation_date | class_label class_count

Custom 2021-09-28T21 person 5

:12:35.777000
uTcC

2024 - All rights reserved to XXII GROUP. -|6

Average time per zone
Average time per zone is a special kind of zone based counting.

Average time per zone events are stored in the TriggerObjectEvent table. It
represents an event that is triggered every time an object enters or exits a zone. If
an object exits the zone the time it spent in the zone is recorded in the
validityPeriod field and then an insertion is made into BigQuery only for this
object.

2024 - All rights reserved to XXIl GROUP. 17

Below is the MQTT message we receive when dealing with a zone based

counting.

Unset
{
"_id": "6ba7b810-9dad-11d1-806b4-00c04fd430c8",
"jobId": "6152e414a05a3408chdc8d41",
"jobName": "Camera 22",
"countingId": "6152e414a05a3408cbhdc8d42",
"zoneId": "6152e3134b1215a02b2a49c3",
"zoneName": "Average time per zone",
“creationDate": "2021-09-28T21:12:35.777",
"receivedDate": "2021-09-28T21:12:36.777",
“count": 5,
"delta": 3,
"objects": [
{
"label": "person",
“count": 5,
"delta": 1,
"changes": [
{
“id": 71,
"delta": ,
"validityPeriod":

Ilidll: ,
"delta": 1,
"validityPeriod": null

Ilidll: ,
"delta": 1,
"validityPeriod": null

2024 - All rights reserved to XXII GROUP.]8

This message would give the following insertion in the TriggerObjectEvent

table:
id site_id site_name camera_id camera_name skill_id
a47027b2-9d19 | 83eB0cfe-98b5 | XXII DEV 6152e414a05a3 | Camera 22 6152e3134b121
-11ef-8bel1-db | -43dd-b3bb-4a 408cbdc8d41 5a02bcaa9c3
4ea7cacB89 e4c496f3e7
skill_name creation_date | object_label object_validity_period | metadata

Average time
per zone

2021-09-28T21
:12:35.777000
uTC

person

10.5

NULL

2024 - All rights reserved to XXII GROUP. -|9

VLM Statistics

Statistics events are stored in the TriggerObjectEvent table since each event
represents an object when it triggers something. Info on the object is then added
by a VLM under the field objectMetadata.

Below is the MQTT message we receive when dealing with a statistic.

Unset

{
Il_idll :
"zoneId":
"zoneName" :

"6152e414a05a3408cbdc8d40",
"6152e3134b1215a02bcaa9c3",
"VLM statistics"”,

"jobId": "6152e414a05a3408cbdc8d41",

"jobName": "Camera 22",
“creationDate": "2021-09-28T21:12:35.777",
"label”: "car",
"objectId": ,
"objectMetadata": {
"color": "red",
"brand”: "Renault"”
}

This message would give

table:

the following insertion in the TriggerObjectEvent

id site_id site_name camera_id camera_name skill_id

bfcofb4e-9d1a | 83eBbcfe-98b5 | XXII DEV 6152e414a05a3 | Camera 22 6152e3134b121

-11ef-8bel1-db | -43dd-b3bb-4a 408cbdc8d41 5a02bcaadc3

4ea7cacB89 e4c496f3e7

skill_name creation_date | object_label object_validity_period | metadata

VLM 2021-09-28T21 car NULL {"color": "red",

statistics :12:35.777000 "brand": "Renault"}
uTC

2024 - All rights reserved to XxIl GRoup. 20

How to query the database

You will find below explanation on the recommended way to query the database.

TriggerObjectEvent table

Get the number of object for each label and for each skill

Unset
SELECT

skill_id,

skill_name,

object_label,

COUNT(object_label) AS count_by_label
FROM

‘project_id.dataset_id.TriggerObjectEvent’
GROUP BY

object_label,

skill_id,

skill_name

Get the average time per zone for each label for each skill

Unset
SELECT
skill_id,
object_label,
AVG(object_validity_period) AS avg_validity_period
FROM
‘project_id.dataset_id.TriggerObjectEvent’
WHERE
object_validity_period IS NOT NULL
GROUP BY
skill_id,
object_label

2024 - All rights reserved to XXII GROUP. 2-|

Get the number of corresponding persons to each profile combination

Unset
WITH ExtractedMetadata AS (
SELECT
skill_id,
camera_id,
EXTRACT(DATE FROM creation_date) AS day_date,
EXTRACT(HOUR FROM creation_date) AS hour,
JSON_VALUE (METADATA, 'S.age') AS age,
JSON_VALUE (METADATA, 'S.gender') AS gender,
JSON_VALUE (METADATA, '$.style') AS style
FROM
‘project_id.dataset_id.TriggerObjectEvent"

SELECT
skill_id,
camera_id,
day_date,
hour,
age,
CASE
WHEN age !'= 'underage' THEN gender
ELSE NULL

END AS gender,

CASE
WHEN age !'= 'underage' THEN style
ELSE NULL

END AS style,

COUNT(*) AS count_by_type
FROM

ExtractedMetadata
WHERE

age IN ('underage', '18-30', '31-44', '45-54', '55-64', '65+')

OR gender IN ('female', 'male')

OR style IN ('casual', 'relaxed', 'athleisure', 'business casual’,
'professional’, 'chic', 'undetermined')
GROUP BY

skill_id,

camera_id,

day_date,

hour,

age,

gender,

style

2024 - All rights reserved to XXIl GROUP. 22

CountEvent table

Get the average count in the zone for each skill by label

Unset
SELECT

skill_id,

class_label,

AVG(class_count) AS avg_count_by_class
FROM

‘project_id.dataset_id.CountEvent"
GROUP BY

skill_id,

class_label

2024 - All rights reserved to XXII GROUP. 23

	Table of contents
	CORE Engine
	Configuration

	CORE Insights
	Database schemas
	CountEvent Table​
	TriggerObjectEvent Table
	object_validity_period: The period for which the object stayed in the zone. This field is only use for the Average time per zone skill type. This field can be null.

	Relation between Skill type and the SQL tables
	Detection alerts
	Crowd detection alerts
	Line based countings
	Zone based countings
	Average time per zone
	VLM Statistics

	How to query the database
	TriggerObjectEvent table
	Get the number of object for each label and for each skill
	Get the average time per zone for each label for each skill
	Get the number of corresponding persons to each profile combination

	CountEvent table
	Get the average count in the zone for each skill by label

